PROTONATION OF PHOSPHINAMIDES: THE COUPLING CONSTANT CRITERIA FOR O $\underline{\rm VS}$ N PROTONATION 1

Kenneth E. DeBruin, Amphlett G. Padilla, and David M. Johnson Department of Chemistry, Colorado State University, Fort Collins, Colorado 80521 (Received in USA 1 September 1971; received in UK for publication 6 October 1971)

The suggestion has been made² that the most stable form of protonated phosphinamides has the proton on nitrogen rather than on the phosphoryl oxygen. Among other evidence, the coupling constant, J_{PNCH} , was observed to decrease upon protonation of two different phosphinamides, <u>1b</u> and <u>2b</u>. This is in contrast to the observed increase in the coupling constant, J_{POCH} , when the corresponding phosphinate esters, <u>1a</u> and <u>2a</u>, are protonated on oxygen. The possibility of using this coupling constant behavior as a general criteria for establishing the position of protonation of phosphinamides was proposed. We have had occasion to synthesize a number of compounds which can serve as models for 0-protonation and thus provide a test for this coupling constant criteria; namely, phosphoryl oxygen alkylated phosphonium salts, 4, 5, and 6.

× 1

	Ph., P ^O Ph r P ^X X	PhP
$\lim_{x \to \infty} X = OMe$	2a X = OMe	3a X = OMe
$1b X = NMe_2$	$\frac{2b}{2} X = NMe_2$	$3b X = NMe_2$
B SbCI6	Ph., + OMe Ph - P sbCl ₆	Ph, + OMe Me - SbCI6
4a X = OMe	5a X = OMe	6a X = OMe
$4b X = NMe_2$		$\frac{6b}{2}$ X = NMe ₂

The synthesis of the phosphonium salts³ was readily accomplished by 0-alkylation⁴ of the corresponding phosphoryl compounds, 1, 2, and 3. The table lists the coupling constants (J) and chemical shifts (δ) of the respective ligands. All spectra were run in the same solvent (CH₂Cl₂), except where noted,⁵ and under similar concentrations (<u>ca</u>. 29%).

	$X = OCH_3$		$X = NMe_2$	
Compound	б (РОС <u>Н</u> 3)	^Ј росн	δ (PNC <u>H</u> 3)	J _{PNCH}
1 Protonated 1 ^a	3.75 	10.0 10.7 ^b	2.53	10.2 7.9 ^b
4	4.25, 4.29	10.8, 10.8	2.97	10.0
$\frac{2}{2}$ Protonated 2^{a}	3.73	11.1 12.1 ^b		11.1 ^a 10.0 ^b
5	4.03 ^c	12.0		
3 Protonated 3	3.59	11.5 12.1 ^b	2.60	10.7
<u>6</u>	4.18	12.0	3.00	10.8
^a Reference 2.	^b Solve:	nt H ₂ SO ₄	^c Acetone-d ₆	

The increase in J_{POCH} reported for protonation of the phosphinate esters 1a, 2a, and 3a is similar to that observed upon 0-alkylation, supporting the model. Furthermore, the J_{PNCH} which decreased upon protonation of 1b and 2b remains virtually constant upon phosphoryl oxygen alkylation, 4b and 6b, consistent with the original postulate² that these phosphinamides are protonating on nitrogen. The observation that J_{PNCH} does not increase upon 0-alkylation, however, renders the use of a change in coupling constant as a criteria for 0 vs N protonation guestionable if a small decrease is observed upon protonation.

REFERENCES

- 1. This research was supported by a grant from the Petroleum Research Fund administered by the American Chemical Society and an FIC Grant from Colorado State University.
- 2. P. Haake and T. Koizumi, Tetrahedron Letters, 4850 (1970).
- All phosphonium salts gave satisfactory elemental analyses and had nmr spectra consistent with prediction.
- H. Meerwein, E. Brattenberg, H. Gold, E. Pfeil, and G. Willfang, J. Prakt. Chem., 154, 83 (1939).
- The J_{PNCH} for 1b was constant in other solvents such as CH₃Cl, acetone, nitromethane, and methanol.